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ABSTRACT

Recent developments in cavity wall construction include increased cavity widths, different
ties ranging from flexible to rigid, and different types of back-up wall. These changes have
resulted from the need to provide space for thermal insulation, to recognize new
developments in wall construction utilizing steel studs, and shear transfer type wall
connectors. Details of performance and design recommendations for cavity walls are

presented and discussed.
INTRODUCTION

Cavity walls in current construction include an exterior wythe usually brick and not load
bearing, and a back-up wythe of concrete masonry or steel studs which resist lateral load.
These wythes are separated by a cavity, which includes an air space and insulation, and are
connected with ties. The incorporation of 75 mm or more of insulation in the cavities and
the interaction of the exterior wall assembly with the main structural elements requires
better understanding of the behaviour and function of the ties connecting the two wythes of
the cavity walls and of the fastening of the back-up walls to the main structural elements.

This paper examines the performance of several types of cavity walls as they relate to two
types of connectors; namely flexible, capable of transferring only tension and
compression, and rigid, capable of transferring shear, tension and compression.
Recommendations are made as to the type of connectors best suited for constructing walls

with relatively large cavities.



TYPES OF CAVITY WALLS

Cavity walls have traditionally been designed on the assumption that all lateral loads acting
on the exterior wythe are transferred and resisted by a back-up portion or interior wythe of
the assembly. The need for higher wall insulation requirements has increased the width of
the cavities and it is possible for cavities to be 100 mm or larger. Two common cavity
walls used in buildings are assemblies consisting of an exterior weathering veneer (usually
90 mm thick burned clay or concrete brick masonry), a 25 mm air space, 25 to 75 mm or
more insulation, and an interior back-up wall of either 140 mm or thicker concrete masonry
wall or 140 mm steel stud wall. Additional insulation can be provided either as loose fill in

the cores of the masonry, or in the form of batt insulation between the studs.

An air barrier is normally positioned between the insulation placed in the cavity and the
back-up wall. The main consideration for choosing the position of the insulation and the
air barrier is the location of the dew point and the continuity of the thermal barrier. Where
steel studs form the back-up wall, placing the insulation in the cavity so that the dew point
is outside the studs will reduce the risk of condensation and possible subsequent corrosion

of the steel stud back-up wall.

In addition to the main components of the wall assembly, flashing is incorporated at the
bottom portion of the assembly to intercept any water which may enter the assembly from
the exterior and divert it outwards through weep holes (vents) constructed in the exterior
walls at regular intervals, usually at 600 mm center to center. Figure 1 shows the main

components of the two wall assemblies described above.

The two wythes of the cavity walls are connected by ties spaced at intervals usually
obtained from traditional guidelines codified in standards such as CSA A370, (1).

The guidelines provided by standards as they relate to fastening cavity walls to the main
structural elements (slabs, beams, columns, etc.) are at present not very clear. Ref. 1
requires that the top of concrete masonry back-up walls be supported at 1200mm centers on
each side in a staggered configuration. The interaction of these walls with the structure and
the influence of the type of connectors used to transfer the load to the main structural
elements has been left to chance over the years. For steel stud back-up walls, the studs are
supported by steel tracks which are usually fastened to concrete slabs by means of power

activated fasteners with varying and at times questionable results.
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Fig. 1 Cavity Walls

TIE FUNCTIONS AND THEIR EFFECT ON THE BEHAVIOR OF THE
WALL ASSEMBLY

The traditional function of ties is to transfer the loads acting on the veneer to the back-up
wall. Furthermore, considerable emphasis is placed on provisions to allow the differential
movement between the veneer and the back-up wall resulting from both moisture expansion
of the veneer, shrinkage of the back-up wythe and deformation caused by thermal

movements.

Concrete block masonry can be expected to undergo, after construction, a linear shrinkage
of the order of 0.01% to 0.02%. This value will be greater for lightweight concrete blocks
made with expanded shale aggregates and less for concrete blocks that have been autoclaved
or steam cured at high pressure. Subsequent wetting and drying of the concrete blocks
results in lesser amounts of expansion and contraction. Bricks, on the other hand, having
been fired in a kiln, experience irreversible moisture expansion over an extended period of
time. This is due to the hydration of amorphous materials that are formed during burning



of the bricks being exposed to environmental humidity over time. Although there is
shrinkage taking place in the mortar at the same time, there is generally a resultant
expansion of the clay brick veneer. A typical value of brick masonry linear expansion after
two years would be 0.005% to 0.015%. The shrinkage of concrete block masonry and the
expansion of clay brick masonry should be borne in mind, especially when the two
materials are used in close proximity. Stone masonry is relatively unaffected by changes
in humidity.

Asis common for other structural materials, masonry will expand when heated and contract
when cooled. This will lead to differential deformations between interior walls in a
building, which are at a relatively constant temperature, and exterior walls, which are
exposed to variations in climatic conditions. The coefficients of linear thermal expansion
are in the order of 0.000008 mm/mm per degree Celsius for normal concrete masonry and
0.000006 mm/mm per degree Celsius for clay brick and stone masonry. These values are
approximate and will vary with materials available locally.

In order to accommodate these deformations ties called adjustable anchors have been
developed permitting free movement in the vertical direction. A typical adjustable
connector is shown in Fig. 2. Figure 3 shows a connector capable of developing a shear
transfer between the two wythes of a cavity wall.

Fig. 2 Adjustable Connectors
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Fig. 3 Shear Transfer Connector

For a steel stud wall assembly similar to the one shown in Fig. 1, the assumption that the
loads acting on the ties are determined by the tributary area for each tie is incorrect.
Because of the flexibility of the steel stud back-up wall, ties located at the middle third of
the height of the wall, will carry substantially less load than ties at the upper and lower
portion of the wall. However, the loads will redistribute once the veneer cracks. A recent
study (2) commissioned by the Canadian Mortgage and Housing Corporation, has found
adjustable ties inadequate. Similar conclusions were reached by the authors in an earlier
study (3). Adjustable connectors do not function as designed when the wall assembly
deflects either due to loads applied or due to thermally induced movements. Figure 4
shows a typical load distribution on ties prior to cracking, obtained from Ref. (2), which
takes into account the support conditions.

Since the distribution of loads on the ties can be predicted, providing additional ties at the
ends of the wall assembly is desirable for serviceability requirements. With the increasing
size of the cavity and based on field observations of the effects of rigidly connecting the
veneer to the back-up wall, the use of adjustable connectors is not justified.

Photo 1 shows a brick veneer connected to a block wall by means of a row of burned clay
units set into the back-up wall. The wall was constructed in 1969 and no signs of distress
due to thermal and moisture movements were observed when sections of the wall were
removed recently for renovations. In addition to being load bearing, the concrete back-up
block wall was also subjected to shrinkage strains.
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APPROXIMATE EVALUATION OF FORCES INDUCED TO A SHEAR CONNECTOR
CAVITY WALL BY DIFFERENTIAL MOVEMENT

The top shear connector is the critical connector and a conservative approximate approach
would be to neglect all other shear connectors and assume that the restraint to imposed
deformations is provided solely by the top connector. It is also assumed that no moment
capacity exists at the junction of the connector and the brick wythe. These conditions are
shown schematically in Fig. 5.

SHEAR CONNECTOR
BLOCK WALL a BRICK WALL

N4/
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L block
L brick

Fig. 5 Model for Approximate Analysis Method

By using compatibility, equilibrium and Hooke's law, a close form solution for the final
deformations Ag[, and ABR at nodes 1 and 2 (see Fig 5 ) can be derived. The proposed

expression is:
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Deformations 6gy, and dgR are imposed deformations at nodes 1 and 2 due to material

properties and temperature changes. These deformations correspond to unrestrained

movements of the wall and can be expressed as follows :

and OB Esupr %pr- ATpR)- Lpk

By solving equation (1) the unknown final deformations Ay, and ABR can be found.

Finally, the internal forces are obtained by the slope deflection relations for the shear
connector:
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MATERIAL AND ENVIRONMENTAL EFFECTS ON RIGIDLY CONNECTED
CAVITY WALLS

The moisture expansion of burned clay units and the possible shrinkage of a concrete back-
up wall will cause a load to be induced on the assembly if movement is restrained. This
load will be in the form of compression in the bricks, tension in the concrete block wall and
shear in the connectors. The presence of this load, provided that it is small in magnitude,
will reduce cracking of the veneer and will have negligible effect on the back-up block wall
especially if it contains vertical reinforcement to resist the induced tension if the allowable is
exceeded. The induced loads are small in magnitude and can be easily evaluated using a
suitable computer program or estimated using simple techniques. One such simple

technique is illustrated here as follows:



Consider a wall 8000 mm high consisting of a 90 mm wide burned clay veneer shear
connected to a 240 mm concrete block back-up wythe and reinforced with a 15M bars at

1600 mm centers, with a 75 mm cavity as shown in Figure 6.
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Fig. 6 Shear Transfer Connector

The spacing of the connectors is assumed to be 800 mm on center horizontally and there are
a total of 15 connectors in the vertical direction. Assuming that the veneer will be exposed
to a 50 degree Celsius thermal fluctuation and using the average values for moisture and
shrinkage movement reported earlier, the most severe unrestrained movement between the

wythes will be:

8,000 (0.0001 + 50 x 0.000006) + 0.00015 x 7,800 =3.20 mm + 1.17 mm
=4.37 mm

Where 3.20 mm is the expansion of the clay brick veneer and 1.17 mm is the shrinkage of
the concrete block back-up wythe. The elastic modulus of the block wall Eg is 7,350 MPa
and its area 81,190 mm? /800 mm. The corresponding values for the brick veneer are
Egr= 9,750 MPa and its area of cross section is 72,000 mm?2 /800 mm. For the 75 mm
cavity, which is commonly used in actual construction by incorporating 50mm insulation
and 25mm air space, and shear connectors with an elastic modulus E;.=200 GPa and
effective moment of inertia, I, =1,000 mm™ obtained from testing of V-ties (Ref 6) and
by taking into consideration the influence of the shear connector plate, an approximate
conservative evaluation of the induced forces of the assembly can be performed. Note that
the moment of intertia of the V-tie is approximately 55 mm# and there are a total of 15 V-



ties along the height of the 8,000 mm wall (15 x 55 = 825, 1000 mm‘4 is used for
simplicity).

As a demonstration of the approximate analysis method consider the wall discussed earlier
and refer to Fig. 5. From equation (3): 8g;=-1.17 mm and dgg =3.20 mm.
From equation (2): a=0.0186 and p=0.0162
Substituting these values into equation (1) yields:
AL = -1.9015 mm
Agr = 3.1315 mm
The internal force and moment are then given by equations (4) :
Q=6.006 kN and M=0.45 kN-m
The brick wall has to resist a compressive stress of:
6.006 x 10°
72x10°
and the block wall a tensile stress of:
-6.006x 10°  0.45x10°

L0 5.752x 10°

=0.083 MPa

=-0.1523 MPa

Photo 2 : Cavity wall exposed to climatic conditions
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The forces obtained are relatively small and they can be resisted by the wall assemblies
without causing distress. A small amount of vertical reinforcement is recommended for the
back-up concrete block wall to resist the tensile stresses.

The results obtained reinforce the observations and instrumentations of wall assemblies
such as the one shown in photo 2 monitored for a total of 5 years, which showed no sign

of distress.

The distribution of connectors along the entire height of the wall will further decrease the
induced stresses. Dead load stresses will further reduce the induced tensile stress in the
block wythe.

Similar conclusions were reached by reference (2) after monitoring a tall structure in
Ottawa. It should be noted also that walls constructed with adjustable connector are only
free to move in the vertical direction if the wythes remain perfectly straight and parallel, a

condition that never occurs in practice.

CONNECTING THE BACK-UP WALL TO THE MAIN STRUCTURAL ELEMENTS

Connecting the back-up wall to the structure requires that the effects of frame shortening
and flexural deflections of the floor or roof system are evaluated. The performance of the
assembly is influenced by this connection to such a degree that failure to properly detail and
construct this connection may result in severe distress and expensive repairs.

For a typical concrete frame structure constructed with 30 MPa concrete, assuming that the
elastic modulus is 27,500 MPa and that the effect of loads causes a stress in the order of 10
MPa, for a 3 metre high column the elastic deformation would be 1.1 mm. Creep
deformation will be between 1.1 and 2.5 mm. Furthermore, long term shrinkage causes a
deformation between 0.6 to 2.4 mm. Thus the total deformation of the column will range

from about 2.8 to 6.0 mm.

Fastening the back-up wall to the slab or beam must be carried out in such a way as to
account for the effects of slab deflection. For a 5,000 mm span between columns, the most
commonly accepted value for deflection is in the order of 14 mm (L/360). If no provisions
are made to accommodate such deflections, connecting the back-up wall to slabs will result

in load transfer from the main structural elements to the back-up wall.

For infill walls designed to resist only lateral loads, the connection at one end (usually at

the top of the back-up wall), must allow for a minimum movement in the order of 20 mm

1
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if the wall is not designed to carry the imposed load. For back-up walls designed to carry
the load from frame shortening and slab or beam deflection, the effects of such loadings
must be considered especially as resulting deformations may affect the integrity of the air
barrier. To allow for vetical movement between back-up steel studs and floor slabs or
beams where the wall is connected, Fig. 5 shows an arrangement utilizing the upper steel
track to form a deformation accommodating connection. To ensure that the veneer and the
air barriers are not affected by lateral deflections under service loads, the lateral deflection
of the veneer must be limited to less than or equal to H/720, where H is the height of the
back-up wall.

STEEL TRACK

FASTENER HOLE

BOLT (OR SCREW)
BOLT (OR SCREW)

STEEL STUD

_STEEL TRACK

——__BOLT (OR SCREW)

\.;PACER (_PL.AE{C OR METAL)
VERTICAL LEG OF TRACK WEB

& STEEL STUD

Fig. 5 Deflection Accommodating Connection



RECOMMENDED TIES AND CONNECTIONS

In order to reduce the thermal effects of metal connectors bridging the cavity, their numbers
and thermal conductivity must be minimized. The maximum permissible spacing in Ref (1)
is 800 mm in the horizontal and 600 in the vertical directions but no guidelines exist relating
to the thermal properties of connectors.

For back-up walls other than masonry, more than one subtrade is involved in the exterior
wall construction and the fastening of connectors to the back-up wall is carried out prior to
erecting the veneer. The type of connector to be used should facilitate the construction of
the veneer by allowing the placing of the units to be independent of the locations of the
connectors. Such is achieved using connectors shown in Fig. 3, used in conjunction with
a steel stud back-up wall. This connector provides for a positive connection with the metal
stud and the fastening is not susceptible to corrosion. Thermal conductivity is reduced by
removing material not needed for strength. A plastic friction fit insert is placed over the
connector plate and further locked in position by the V-shaped component which ensures
that the insulation is held tightly against the back-up wall. A similar type of connector for
use in conjunction with a concrete block masonry back-up wall is shown in Fig. 6. The
performance of such connectors which additionally provide for transferring shear and thus
utilizing the structural properties of the veneer is documented in Refs. (4) and (5). The use
of stick clips or other accessories commonly available to fasten the insulation on the back-
up wall is not recommended since their connection may be adversely affected by deformation
of the wall and dimensional instability of some insulation materials.

CONCLUSIONS AND RECOMMENDATIONS

The assumption that the only contributing factor to the distress of brick veneer walls is the
moisture and thermal movement of the burned clay units needs to be re-examined. Cavity
wall assemblies are very susceptible to the effects of frame shortening and deflections of

the elements to which the walls are fastened.

Walls utilizing connectors permitting free vertical movement do not eliminate load transfer
to the exterior wythe from the effects of frame shortening and deflections of slabs and
beams. Cavity walls utilizing such connectors exhibit larger deflections of the veneer thus
causing cracking to occur at lower load levels. To minimize such effects, the use of rigid
connectors is recommended. In designing exterior wall assemblies, frame shortening and

deflections of main structural elements must be accounted for.

13
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